Rotation-Invariant Texture Recognition
نویسندگان
چکیده
This paper proposes a new texture classification system, which is distinguished by: (1) a new rotation-invariant image descriptor based on Steerable Pyramid Decomposition, and (2) by a novel multi-class recognition method based on Optimum Path Forest. By combining the discriminating power of our image descriptor and classifier, our system uses small size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz dataset. High classification rates demonstrate the superiority of the proposed method.
منابع مشابه
Rotation Invariant Texture Recognition Using a Steerable Pyramid
A rotation-invariant texture recognition system is presented. A steerable orientedpyramid is used to extract representative features for the input textures. The steerability of the filter set allows a ship to an invariant representation via a DFT-encoding step. Supervised classijkation follows. State-of-the-art recognition results are presented on a 30 texture database with a comparison across ...
متن کاملRotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features
In this paper, we propose Local Binary Pattern Histogram Fourier features (LBP-HF), a novel rotation invariant image descriptor computed from discrete Fourier transforms of local binary pattern (LBP) histograms. Unlike most other histogram based invariant texture descriptors which normalize rotation locally, the proposed invariants are constructed globally for the whole region to be described. ...
متن کاملRotation-invariant texture classification using feature distributions
A distribution-based classification approach and a set of recently developed texture measures are applied to rotation-invariant texture classification. The performance is compared to that obtained with the well-known circular-symmetric autoregressive random field (CSAR) model approach. A difficult classification problem of 15 different Brodatz textures and seven rotation angles is used in exper...
متن کاملRotation and scale invariant texture classification
Texture classification is very important in image analysis. Content based image retrieval, inspection of surfaces, object recognition by texture, document segmentation are few examples where texture classification plays a major role. Classification of texture images, especially those with different orientation and scale changes, is a challenging and important problem in image analysis and class...
متن کاملRotation invariant texture descriptors based on Gaussian Markov random fields for classification
Local Parameter Histograms (LPH) based on Gaussian Markov random fields (GMRFs) have been successfully used in effective texture discrimination. LPH features represent the normalized histograms of locally estimated GMRF parameters via local linear regression. However, these features are not rotation invariant. In this paper two techniques to design rotation invariant LPH texture descriptors are...
متن کاملFast Features Invariant to Rotation and Scale of Texture
A family of novel texture representations called Ffirst, the Fast Features Invariant to Rotation and Scale of Texture, is introduced. New rotation invariants are proposed, extending the LBP-HF features, improving the recognition accuracy. Using the full set of LBP features, as opposed to uniform only, leads to further improvement. Linear Support Vector Machines with an approximate χ-kernel map ...
متن کامل