Rotation-Invariant Texture Recognition

نویسندگان

  • Javier A. Montoya-Zegarra
  • João Paulo Papa
  • Neucimar Jerônimo Leite
  • Ricardo da Silva Torres
  • Alexandre X. Falcão
چکیده

This paper proposes a new texture classification system, which is distinguished by: (1) a new rotation-invariant image descriptor based on Steerable Pyramid Decomposition, and (2) by a novel multi-class recognition method based on Optimum Path Forest. By combining the discriminating power of our image descriptor and classifier, our system uses small size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz dataset. High classification rates demonstrate the superiority of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotation Invariant Texture Recognition Using a Steerable Pyramid

A rotation-invariant texture recognition system is presented. A steerable orientedpyramid is used to extract representative features for the input textures. The steerability of the filter set allows a ship to an invariant representation via a DFT-encoding step. Supervised classijkation follows. State-of-the-art recognition results are presented on a 30 texture database with a comparison across ...

متن کامل

Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features

In this paper, we propose Local Binary Pattern Histogram Fourier features (LBP-HF), a novel rotation invariant image descriptor computed from discrete Fourier transforms of local binary pattern (LBP) histograms. Unlike most other histogram based invariant texture descriptors which normalize rotation locally, the proposed invariants are constructed globally for the whole region to be described. ...

متن کامل

Rotation-invariant texture classification using feature distributions

A distribution-based classification approach and a set of recently developed texture measures are applied to rotation-invariant texture classification. The performance is compared to that obtained with the well-known circular-symmetric autoregressive random field (CSAR) model approach. A difficult classification problem of 15 different Brodatz textures and seven rotation angles is used in exper...

متن کامل

Rotation and scale invariant texture classification

Texture classification is very important in image analysis. Content based image retrieval, inspection of surfaces, object recognition by texture, document segmentation are few examples where texture classification plays a major role. Classification of texture images, especially those with different orientation and scale changes, is a challenging and important problem in image analysis and class...

متن کامل

Rotation invariant texture descriptors based on Gaussian Markov random fields for classification

Local Parameter Histograms (LPH) based on Gaussian Markov random fields (GMRFs) have been successfully used in effective texture discrimination. LPH features represent the normalized histograms of locally estimated GMRF parameters via local linear regression. However, these features are not rotation invariant. In this paper two techniques to design rotation invariant LPH texture descriptors are...

متن کامل

Fast Features Invariant to Rotation and Scale of Texture

A family of novel texture representations called Ffirst, the Fast Features Invariant to Rotation and Scale of Texture, is introduced. New rotation invariants are proposed, extending the LBP-HF features, improving the recognition accuracy. Using the full set of LBP features, as opposed to uniform only, leads to further improvement. Linear Support Vector Machines with an approximate χ-kernel map ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007